The dynamics of a nonlocal dispersal logistic model with seasonal succession

发布者:文明办发布时间:2023-12-06浏览次数:324

主讲人:戴斌祥 中南大学教授


时间:2023年12月11日10:00


地点:三号楼115室


举办单位:数理学院


主讲人介绍:戴斌祥,中南大学数学与统计学院二级教授、博士生导师;湖南省数学学会常务理事、高等教育与大学数学竞赛工作委员会副主任委员;中国数学会生物数学专业委员会常务理事;主要从事时滞微分方程与离散动力系统、生物数学、反应扩散方程等领域的研究,先后在《Nonlinearity》、《J Diff Equ》、 《J Dyn Diff Equ》、《ZAMP》、 《J Math Anal Appl.》、《Nonlinear Anal》等国内外权威期刊上发表学术论文160多篇,出版专著与教材10余部,主持6项国家自然科学基金面上项目、1项973子课题、1项湖南省自然科学基金重点课题和多项省部级科研课题,获得湖南省科技进步一等奖和湖南省自然科学一等奖各1项,曾获得湖南省优秀博士学位论文指导教师奖和全国宝钢教育基金优秀教师奖。


内容介绍:This talk is devoted to a nonlocal dispersal logistic model with seasonal succession in one-dimensional fixed boundary and free boundaries,respectively, where the seasonal succession accounts for the effect of two different seasons. For fixed boundary,we provide the persistence-extinction criterion for the species,which is different from that for local diffusion model. For free boundary, we examine the long-time dynamical behaviour and the criteria that completely determine when spreading and vanishing can happen, revealing some significant differences from the model without seasonal succession. Moreover, we use a “thin-tail” condition on the kernel function to estimate the asymptotic spreading speed, which is achieved by solving the associated semi-wave problem.